A MULTI-FIDELITY NEURAL NETWORK SURROGATE SAMPLING METHOD FOR UNCERTAINTY QUANTIFICATION
نویسندگان
چکیده
منابع مشابه
A surrogate accelerated multicanonical Monte Carlo method for uncertainty quantification
In this work we consider a class of uncertainty quantification problems where the system performance or reliability is characterized by a scalar parameter y. The performance parameter y is random due to the presence of various sources of uncertainty in the system, and our goal is to estimate the probability density function (PDF) of y. We propose to use the multicanonical Monte Carlo (MMC) meth...
متن کاملDeep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
State-of-the-art computer codes for simulating real physical systems are often characterized by vast number of input parameters. Performing uncertainty quantification (UQ) tasks with Monte Carlo (MC) methods is almost always infeasible because of the need to perform hundreds of thousands or even millions of forward model evaluations in order to obtain convergent statistics. One, thus, tries to ...
متن کاملUncertainty Quantification in Rothermel’s Model Using an Efficient Sampling Method
111 Abstract—The purpose of the present work is to quantify parametric uncertainty in Rothermel’s wildland fire spread model (implemented in software such as BehavePlus3 and FARSITE), which is undoubtedly among the most widely used fire spread models in the United States. This model consists of a nonlinear system of equations that relates environmental variables (input parameter groups) such as...
متن کاملA conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملSampling image segmentations for uncertainty quantification
In this paper, we introduce a method to automatically produce plausible image segmentation samples from a single expert segmentation. A probability distribution of image segmentation boundaries is defined as a Gaussian process, which leads to segmentations which are spatially coherent and consistent with the presence of salient borders in the image. The proposed approach is computationally effi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Uncertainty Quantification
سال: 2020
ISSN: 2152-5080
DOI: 10.1615/int.j.uncertaintyquantification.2020031957